ATR Kinase Activity Regulates the Intranuclear Translocation of ATR and RPA following Ionizing Radiation

نویسندگان

  • Sharon M. Barr
  • Cindy G. Leung
  • Elbert E. Chang
  • Karlene A. Cimprich
چکیده

Upon damage of DNA in eukaryotic cells, several repair and checkpoint proteins undergo a dramatic intranuclear relocalization, translocating to nuclear foci thought to represent sites of DNA damage and repair. Examples of such proteins include the checkpoint kinase ATR (ATM and Rad3-related) as well as replication protein A (RPA), a single-stranded DNA binding protein required in DNA replication and repair. Here, we used a microscopy-based approach to investigate whether the damage-induced translocation of RPA is an active process regulated by ATR. Our data show that in undamaged cells, ATR and RPA are uniformly distributed in the nucleus or localized to promyelocytic leukemia protein (PML) nuclear bodies. In cells treated with ionizing radiation, both ATR and RPA translocate to punctate, abundant nuclear foci where they continue to colocalize. Surprisingly, an ATR mutant that lacks kinase activity fails to relocalize in response to DNA damage. Furthermore, this kinase-inactive mutant blocks the translocation of RPA in a cell cycle-dependent manner. These observations demonstrate that the kinase activity of ATR is essential for the irradiation-induced release of ATR and RPA from PML bodies and translocation of ATR and RPA to potential sites of DNA damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATR kinase activation in G1 phase facilitates the repair of ionizing radiation-induced DNA damage

The kinase ATR is activated by RPA-coated single-stranded DNA generated at aberrant replicative structures and resected double strand breaks. While many hundred candidate ATR substrates have been identified, the essential role of ATR in the replicative stress response has impeded the study of ATR kinase-dependent signalling. Using recently developed selective drugs, we show that ATR inhibition ...

متن کامل

Protein kinase mutants of human ATR increase sensitivity to UV and ionizing radiation and abrogate cell cycle checkpoint control.

In fission yeast, the rad3 gene product plays a critical role in sensing DNA structure defects and activating damage response pathways. A structural homologue of rad3 in humans (ATR) has been identified based on sequence similarity in the protein kinase domain. General information regarding ATR expression, protein kinase activity, and cellular localization is known, but its function in human ce...

متن کامل

Chromatin association of rad17 is required for an ataxia telangiectasia and rad-related kinase-mediated S-phase checkpoint in response to low-dose ultraviolet radiation.

Activation of the S-phase checkpoint results in an inhibition of DNA synthesis in response to DNA damage. This is an active cellular response that may enhance cell survival and limit heritable genetic abnormalities. While much attention has been paid to elucidating signal transduction pathways regulating the ionizing radiation-induced S-phase checkpoint, less is known about whether UV radiation...

متن کامل

Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance.

A Cre/lox-conditional mouse line was generated to evaluate the role of ATR in checkpoint responses to ionizing radiation (IR) and stalled DNA replication. We demonstrate that after IR treatment, ATR and ATM each contribute to early delay in M-phase entry but that ATR regulates a majority of the late phase (2-9 h post-IR). Double deletion of ATR and ATM eliminates nearly all IR-induced delay, in...

متن کامل

NFBD1/Mdc1 mediates ATR-dependent DNA damage response.

Budding yeast Rad9 (scRad9) plays a central role in mediating Mec1-dependent phosphorylation by recruiting its downstream substrates. The human scRad9 orthologues 53BP1 and NFBD1 associate with ionizing radiation-induced foci (IRIF) at sites of DNA repair. RNAi-based gene silencing of 53BP1 or NFBD1 has shown impaired phosphorylation of SQ/TQ [ataxia-telangiectasia mutated/ATM and Rad3-related ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2003